注册 登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

力的博客

小歇一会 heiheidemaolv

 
 
 

日志

 
 

HDU 2844 多重背包  

2011-11-27 21:23:45|  分类: ACM/C/C++/OJ |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

http://acm.hdu.edu.cn/showproblem.php?pid=2844

Coins
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2105 Accepted Submission(s): 880
Problem Description
Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. One day Hibix opened purse and found there were some coins. He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn't know the exact price of the watch.
You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins.
Input
The input contains several test cases. The first line of each test case contains two integers n(1 ≤ n ≤ 100),m(m ≤ 100000).The second line contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1 ≤ Ai ≤ 100000,1 ≤ Ci ≤ 1000). The last test case is followed by two zeros.
Output
For each test case output the answer on a single line.
Sample Input
3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0
Sample Output
8
4
多重背包问题
题目

有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。


基本算法

这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:


f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}

复杂度是O(V*Σn[i])。


转化为01背包问题

另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]件01背包中的物品,则得到了物品数为Σn[i]的01背包问题,直接求解,复杂度仍然是O(V*Σn[i])。

但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。

方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种 物品分成系数分别为1,2,4,6的四件物品。

分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。

这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为<math>O(V*Σlog n[i])的01背包问题,是很大的改进。

下面给出O(log amount)时间处理一件多重背包中物品的过程,其中amount表示物品的数量:

procedure MultiplePack(cost,weight,amount)
    if cost*amount>=V
        CompletePack(cost,weight)
        return
    integer k=1
    while k<amount
        ZeroOnePack(k*cost,k*weight)
        amount=amount-k
        k=k*2
    ZeroOnePack(amount*cost,amount*weight)

希望你仔细体会这个伪代码,如果不太理解的话,不妨翻译成程序代码以后,单步执行几次,或者头脑加纸笔模拟一下,也许就会慢慢理解了。


O(VN)的算法

多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的“男人八题”幻灯片 上。


小结

这里我们看到了将一个算法的复杂度由O(V*Σn[i])改进到O(V*Σlog n[i])的过程,还知道了存在应用超出NOIP范围的知识的O(VN)算法。希望你特别注意“拆分物品”的思想和方法,自己证明一下它的正确性,并将完整的程序代码写出来。

解题代码:

#include <stdio.h>

int f[100010],M,count;

void ZeroOnePack(int val)
{
      int i;
      for(i=M;i>=val;i--)
      {
           if(f[i-val]!=0&&f[i]==0)
           {
                count++;
                f[i]=1;
           }
      }
      return ;
}

int main()
{
    int i,j,k,l,N;
    int coin[110],amount[110];
    while(scanf("%d%d",&N,&M)==2&&(N||M))
    {
          count=0;
          for(i=1;i<=N;i++)
          {
               scanf("%d",&coin[i]);
          }
          for(i=1;i<=N;i++)
          {
               scanf("%d",&amount[i]);
          }
          for(i=0;i<100010;i++)
          {
               f[i]=0;                    
          }
          f[0]=1;
          for(i=1;i<=N;i++)
          {
               k=1;
               while(k<amount[i])
               {
                    ZeroOnePack(coin[i]*k);
                    amount[i]-=k;
                    k*=2;
               }
               ZeroOnePack(coin[i]*amount[i]);
          }
          printf("%d\n",count);
    }
    return 0;
}

  评论这张
 
阅读(1130)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018